Nucleophilic reactions of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{7}\right)$

Tein-Fu Wang *, Ming-Chao Lee, Yuh-Sheng Wen
Institute of Chemistry, Academia Sinica, Taipei, Taiwan

Received 19 January 1994; in revised form 23 March 1994

Abstract

In the presence of a Lewis acid, $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{7}\right)$ (complex 1) reacted with aldehydes to form adducts. Proton removal by a base led to reversal of the reaction with regeneration of 1 . The use of a Lewis acid such as $\mathrm{Me}_{3} \mathrm{Al}$, which also acted as a proton scavenger, led to a smooth reaction to give 6,7 or 8 . Complex 1 also reacted with NBS to yield a complex, 9 , which incorporates a succinimide group. Solid state structures of $\mathbf{8 b}$ and $\mathbf{9}$ were characterized by single crystal X-ray analyses.

Keywords: Molybdenum; Aluminium; Metal carbonyl cation; Allyls; Cyclopentadienyl

1. Introduction

The cationic molybdenum η^{4}-cyclohexadienyl complex 4 has been shown to react with a variety of nucleophiles, allowing the stereocontrolled synthesis of cyclohexene derivatives [1]. However, the nucleophilic reactions of the neutral species the η^{3}-cyclohexadienyl complex 1, leading to cyclohexene derivatives have been relatively unexplored [2]. Recently, it has been shown that 1 reacted with borane (see Scheme 1), giving rise, after hydrogen peroxide treatment, to a regio- and stereo-selective hydroxyl compound [3]. The nucleophilic property of 1 is of considerable interest, because it may provide an alternative approach to the functionalization of cyclohexenes. Following our interest in promoting the use of organometallic complexes in synthesis, we reacted 1 with aldehydes and with some other electrophiles. Reactions and the crystal structures of $\mathbf{8 b}$ and 9 are discussed.

2. Results and discussion

2.1. Preparation of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{7}\right)$ (1)

Complex 1 was prepared from ($\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$) $\mathrm{Mo}(\mathrm{CO})_{2}-$ $\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{9}\right)(3)$ in two steps. Hydride abstraction of 3

[^0]

Scheme 1.
$\left(\mathrm{Ph}_{3} \mathrm{CBF}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}\right.$) [4], gave the cationic dienyl complex 4 which was then deprotonated $\left(\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2}\right.$ $\mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$), providing 1 in 90% yield (see Scheme 2).
2.2. Reaction of 1 with aldehydes: activation by Lewis acids

Treatment of an ethereal solution of 1 and benzaldehyde with one equivalent of zinc chloride gave a yellow precipitate of complex 5 (see Scheme 3). The IR spectrum showed carbonyl stretchings characteristic of an η^{4}-cationic compound at 2018 and $1961 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectrum revealed two bands of equal intensity of cyclopentadienyl protons as singlets at $\delta 6.05$ and 6.06, suggesting an approximately $1: 1$ ratio of

Scheme 2.

diastereomeric isomers. That substrates may come from opposite sides of the metal has been well documented [4,5]. Therefore, the hypothesis was proposed of a diastereomeric mixture arising from the differentiation of two carbonyl faces, leading to a mixture of alkoxyl groups. When a bulkier aldehyde such as pivaldehyde was used, the ratio rose to $1: 3$. Deprotonation of 5 with $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ provided 20% of the desired compound 6 and 80% of reversed compound 1. Similar reversal of reaction was reported by Pearson in the reaction of η^{3}-cyclohexenone with benzaldehyde [3]. Use of BF_{3} as activator in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and/or in $\mathrm{Et}_{2} \mathrm{O}$ gave similar results.

2.3. Reaction of 1 with aldehydes: activation by trimethylaluminium ($\mathrm{Mc}_{3} \mathrm{Al}$)

In order to eliminate the reverse reaction described above, $\mathrm{Me}_{3} \mathrm{Al}$ was tested. In addition to being a Lewis acid, $\mathrm{Me}_{3} \mathrm{Al}$ is also known as an acidic proton scavenger [6]. We were anticipating that $\mathrm{Me}_{3} \mathrm{Al}$ will first react as a Lewis acid to promote the addition of 1 with carbonyl groups, and will then scavenge a proton from the η^{4}-cationic intermediate, resulting in a neutral complex of the type of 6. Indeed, treatment of an ethereal solution of 1 and benzaldehyde with $\mathrm{Me}_{3} \mathrm{Al}$ gave complex 6 in 3:2 diastereomeric mixture. A significant amount of α-methylbenzyl alcohol was also isolated. In the case of pivaldehyde and crotonaldehyde, the intermediate aluminium alkoxides 7a and 7b reacted further with excess aldehyde to give the Oppenauer oxidation [7] compounds $\mathbf{8 a}$ and $\mathbf{8 b}$ respectively (see Scheme 4). In both keto compounds, the olefinic double bond is in the deconjugated position, attested by the absence of evidence of CH_{2} carbons in DEPT experiments. The structure of $\mathbf{8 b}$ was unequivocally characterized by a single crystal X-ray analysis (see Fig. 1). No disubstituted complex was obtained. Attempts

Fig. 1. ORTEP drawing of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{COC}_{3} \mathrm{H}_{5}\right)$ (8b).
to isomerize the double bond to the conjugated position by using bases ($\mathrm{Et}_{3} \mathrm{~N}$ or $\left.\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2} ; \mathrm{H}_{2} \mathrm{O}\right)$ or acid $\left(\mathrm{CF}_{3} \mathrm{COOH}\right)$ were not successful.

2.4. Reaction of 1 with N-bromosuccinimide (NBS)

Treatment of 1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with NBS gave the expected cationic dienyl intermediate (IR: 2056m, 2021s, $1965 \mathrm{~s} \mathrm{~cm}^{-1}$). Further treatment with $\mathrm{Et}_{3} \mathrm{~N}$ provided complex 9 incorporating a succinimide group (see Scheme 5), instead of the anticipated bromo-compound. This was indicated by the characteristic succinimide group absorptions which appeared in the infrared ($1701 \mathrm{~cm}^{-1}$) and ${ }^{1} \mathrm{H}$ NMR ($\delta 2.66, \mathrm{~s}$) spectra. Formation of 9 could have proceeded through the bromodienyl cationic intermediate $\mathbf{1 0}$ followed by succinimide anion addition and fast bromide expulsion to give intermediate 11. Finally, basic deprotonation would give compound 9 . Single crystal X-ray analysis suggested that the succinimide group and the metal were at the trans position of the six-membered ring (see Fig. 2). Therefore, direct substitution of bromine with succinimide anion was unlikely, as if the reaction

Table 1
Selected bond lengths (\AA), bond angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$ in complex 8b

Mo-C(1)	1.931(10)	C(8)-C(9)	1.393(12)
Mo-C(2)	1.926(9)	$\mathrm{C}(8)-\mathrm{C}(13)$	1.504(10)
Mo-C(8)	$2.368(7)$	C(9)-C(10)	1.375(13)
Mo-C(9)	2.189(7)	C(10)-C(11)	1.446(16)
Mo-C(10)	$2.350(8)$	$\mathrm{C}(11)-\mathrm{C}(12)$	1.344(17)
$\mathrm{O}(1)-\mathrm{C}(1)$	1.164(12)	C(12)-C(13)	1.511(13)
$\mathrm{O}(2)-\mathrm{C}(2)$	1.162(10)	C(13)-C(14)	1.534(11)
$\mathrm{O}(3)-\mathrm{C}(14)$	1.206(10)	C(14)-C(15)	1.469(11)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.411(13)	C(15)-C(16)	1.341(11)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.416(15)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.482(12)
$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(2)$	80.5(4)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	122.8(8)
C(5)-C(6)-C(7)	108.2(9)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	120.8(8)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	117.1(7)	$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{C}(13)$	121.0(7)
Mo-C(1)-O(1)	177.1(8)	$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{C}(15)$	122.1(7)
$\mathrm{Mo}-\mathrm{C}(2)-\mathrm{O}(2)$	178.7(7)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	123.3(8)
C(7)-C(3)-C(4)-C(5)	-0.1(5)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	-4.2(4)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(12)-\mathrm{C}(13)$	-2.8(4)	$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	9.1 (4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	1.005)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	179.1(8)

had proceeded through $\mathrm{S}_{\mathrm{N}} 2$, a cis relationship of the succinimide group and the metal might be expected.

2.5. Solid state structure of $8 b$ and 9

Single crystal X-ray diffractometric analyses showed that both 8b and 9 were η^{3} coordinated cyclohexadienyl molybdenum complexes (Figs. 1 and 2). The substituent and molybdenum were on different faces of the six-membered ring. The features of the (η^{5} $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}$ (allyl) fragment are similar to those of the analogous $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{9}\right)$ (3) [4] and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)[8]$. The bond length of central carbon (C9) to molybdenum was about 0.16 \AA shorter than that of terminal carbons (C 8 and C 10) in the allyl portion (see Tables 1 and 2) compared to
$0.17 \AA$ shorter for 3 and $0.12 \AA$ shorter for $\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}$. Molybdenum-carbonyl was in a linear geometry with $\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(2)$ bond angles of 80.5° for $\mathbf{8 b}$ and 81.6° for 9 compared to 82.7° for 3 and 82.5° for $\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}$. The bond length data revealed that $\mathrm{C}(11)-\mathrm{C}(12)$ was a double bond in both compounds ($1.344 \AA$ for $\mathbf{8 b}, 1.308$ \AA for 9). This confirmed that the keto-group of compound 8 b was deconjugated with the ring double bond.

3. Experimental section

All reactions were performed under an argon atmosphere with use of Schlenk techniques. Diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ and n -hexane were distilled from sodium benzophenone ketyls; methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was

Table 2
Selected bond lengths (\AA), bond angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$ in complex 9

Mo-C(1)	1.932(4)	$\mathrm{O}(3)-\mathrm{C}(14)$	$1.200(5)$
Mo-C(2)	1.954(4)	$\mathrm{O}(4)-\mathrm{C}(17)$	1.199(5)
Mo-C(8)	2.345(3)	C(3)-C(4)	$1.395(5)$
Mo-C(9)	2.209(3)	C(4)-C(5)	$1.409(5)$
Mo-C(10)	$2.397(3)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.409(5)$
$\mathrm{N}-\mathrm{C}(13)$	1.490(4)	O(8)-C(13)	1.510(5)
$\mathrm{N}-\mathrm{C}(14)$	1.393(4)	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.400(5)$
$\mathrm{N}-\mathrm{C}(17)$	$1.396(4)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.459(5)$
$\mathrm{O}(1)-\mathrm{C}(1)$	1.156(5)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.308(6)
$\mathrm{O}(2)-\mathrm{C}(2)$	$1.147(5)$	$\mathrm{C}(12)-\mathrm{C}(13)$	1.498(5)
$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(2)$	81.65(15)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	122.8(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	108.5(3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	121.4(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	115.3(3)	$\mathrm{O}(14)-\mathrm{C}(15)-(16)$	106.0(3)
$\mathrm{Mo}-\mathrm{C}(1)-\mathrm{O}(1)$	178.2(3)	$\mathrm{N}-\mathrm{C}(14)-\mathrm{C}(15)$	107.6(3)
$\mathrm{Mo}-\mathrm{C}(2)-\mathrm{O}(2)$	177.9(3)	$\mathrm{N}-\mathrm{C}(14)-\mathrm{O}(3)$	124.2(3)
$\mathrm{C}(17)-\mathrm{N}-\mathrm{C}(14)-\mathrm{O}(3)$	-179.8(4)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{N}$	-1.8(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$0.0(2)$	$\mathrm{C}(2)-\mathrm{Mo}-\mathrm{C}(9)-\mathrm{C}(10)$	-2.4(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(3)$	0.7(2)	$\mathrm{C}(13)-\mathrm{N}-\mathrm{C}(14)-\mathrm{C}(15)$	173.9(4)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-7.2(2)	$\mathrm{C}(13)-\mathrm{N}-\mathrm{C}(17)-\mathrm{C}(16)$	-172.7(4)
$\mathrm{O}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	0.9 (2)	$\mathrm{N}-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	-0.7(2)
$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	178.6(5)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	1.5(2)

Fig. 2. ORTEP drawing of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left[\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}\left(\mathrm{COCH}_{2}\right)_{2}\right]$ (9).
distilled from CaH_{2}. Infrared solution spectra were recorded on a Perkin-Elmer 882 infrered spectrophotometer using 0.1 mm cells with CaF_{2} windows. Melting points were determined by using a Yanaco model MP micro melting point apparatus and were uncorrected. ${ }^{1} \mathrm{H}$ NMR (200 MHz) and ${ }^{13} \mathrm{C}$ NMR (50 MHz) were obtained with a Bruker AC-200 FT spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra (500 MHz) were obtained with a Bruker AMX-500 spectrophotometer. All chemical shifts are reported in parts per million (ppm) relative to $\mathrm{Me}_{4} \mathrm{Si}$. Elemental analyses were obtained on a Perkin-Elmer 2400 CHN elemental analyzer. Mass spectra were recorded on a VG 70-250S mass spectrophotometer.

3.1. Preparation of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{7}\right)$

To a stirred yellow solution of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2^{-}}$ $\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{9}\right)(3)(10.9 \mathrm{~g}, 36.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ was added triphenylcarbenium tetrafluoroborate as an orange powder ($12.1 \mathrm{~g}, 36.6 \mathrm{mmol}$) in one portion. Precipitation was observed. After stirring for 30 min , the ice-water bath was removed and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ was added. Solvents were decanted. Solids were washed twice with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml} \times 2)$, giving [$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ Mo-$\left.(\mathrm{CO})_{2}\left(\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{8}\right)\right]^{+}\left[\mathrm{BF}_{4}\right]^{-}$(4) as a yellow powder.

4, a yellow powder, was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70$ $\mathrm{ml})$ at room temperature. $\mathrm{Et}_{3} \mathrm{~N}(20 \mathrm{ml})$ was then added and stirred until all solids had disappeared (15-20 min). After the solution became homogeneous, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and excess $\mathrm{Et}_{3} \mathrm{~N}$ were evaporated. The desired com-
pound was then taken up with $\mathrm{Et}_{2} \mathrm{O}$ extraction (three times $120+60+60 \mathrm{ml}$), providing $9.8 \mathrm{~g}(90 \%)$ of 1 as an orange crystalline compound after removal of $\mathrm{Et}_{2} \mathrm{O}$. The purity was excellent and the sample was used directly without further purification. An analytically pure sample was obtained by recrystallization from a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}+$ hexanes. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1934 \mathrm{~s}$, $1852 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 6.14-6.06$ ($1 \mathrm{H}, \mathrm{m}$), $5.24(5 \mathrm{H}, \mathrm{s}), 4.65-4.56(1 \mathrm{H}, \mathrm{m}), 4.14-4.11(2 \mathrm{H}$, $\mathrm{m}), 3.99-3.92(1 \mathrm{H}, \mathrm{m}), 2.60-2.31(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 239.6(\mathrm{CO}), 235.3(\mathrm{CO}), 130.8(\mathrm{CH})$, $115.9(\mathrm{CH}), \quad 91.7(5 \times \mathrm{CH}), \quad 57.8(\mathrm{CH}), \quad 53.8(\mathrm{CH})$, $50.3(\mathrm{CH}), 27.4\left(\mathrm{CH}_{2}\right)$. Mass spec (EI, $20 \mathrm{eV},{ }^{98} \mathrm{Mo}$): 270 (35, $\mathbf{M}^{+}-\mathrm{CO}$), 242 ($92, \mathrm{M}^{+}-2 \mathrm{CO}$). Anal. Found: C, $52.86 ; \mathrm{H}, 3.80 . \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2}$ Mo calc.: C, $52.72 ; \mathrm{H}, 4.08 \%$.

3.2. Reaction of 1 with benzaldehyde activated by zinc chloride

To a stirred yellow solution of $\mathbf{1}(\mathbf{2 0 0} \mathrm{mg}, 0.67 \mathrm{mmol})$ and benzaldehyde ($97 \mathrm{mg}, 0.91 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ cooled in iced water was added over 3 min an ethereal solution of zinc chloride ($0.8 \mathrm{ml} \times 1 \mathrm{M}$). The resulting suspension was stirred for 30 min . The yellow precipitate was collected by centrifugation and washed once with $\mathrm{Et}_{2} \mathrm{O}$. A mixture of alkoxides 5 was obtained in a pale yellow powder in 85% yield (310 mg) to show infrared and ${ }^{1} \mathrm{H}$ NMR spectra as follows. IR $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: $2055 \mathrm{~m}, 2018 \mathrm{~s}, 1961 \mathrm{~s} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}, 200$ MHz): δ 7.40-7.21 ($5 \mathrm{H}, \mathrm{m}$, phenyl-H's), 6.35-6.18 $(2 \mathrm{H}, \mathrm{m}), 6.06(5 \mathrm{H}, \mathrm{s}, \mathrm{Cp}-\mathrm{H}$'s; isomer a), $6.05(5 \mathrm{H}, \mathrm{s}$, $\mathrm{Cp}-\mathrm{H}$'s, isomer b), $4.85-4.64(3 \mathrm{H}, \mathrm{m}), 2.77-2.68(1 \mathrm{H}$, $\mathrm{m}), 2.12-1.88(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}, 50 \mathrm{MHz}\right): \delta$ 223.3 (CO), 223.1 (CO), 143.1 (C, phenyl), 130.4, 128.5, 127.6, 126.9 and $126.4\left(\mathrm{CH}\right.$, phenyl- $\left.\mathrm{C}^{\prime} \mathrm{s}\right)$, $94.5(\mathrm{CH} \times 5$, $\mathrm{Cp}-\mathrm{C}^{\prime} \mathrm{s}$), 85.4-84.0 (CH, broad), $78.1(\mathrm{CH}), 76.0(\mathrm{CH})$, $46.4(\mathrm{CH}), 45.6(\mathrm{CH}), 25.9\left(\mathrm{CH}_{2}\right)$.

The above alkoxides were suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 $\mathrm{ml})$ and $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{ml})$ was added. After stirring at room temperature for 10 min , the resulting homogeneous solution was concentrated. Residues were dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$. The resulting brown solution was added to a stirred ether solution (20 ml). Brown precipitates were discarded and the yellow solution was filtered through Celite to give a yellow liquid after removal of solvents. Examination by ${ }^{1} \mathrm{H}$ NMR showed that it contained 80% of 1 and 20% of a $1: 1$ mixture of 6.

3.3. Preparation of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}\left(\mathrm{CO}_{2}\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}-\right.\right.$ OHPh) (6)

To a stirred yellow solution of $1(0.605 \mathrm{~g}, 2.04 \mathrm{mmol})$ and benzaldehyde ($0.6 \mathrm{ml}, 5.4 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ at room temperature was added over 5 min an ethereal solution of $\mathrm{Me}_{3} \mathrm{Al}(4 \mathrm{ml} \times 2 \mathrm{M}, 8 \mathrm{mmol})$. Gentle heat
and evolution of gas was observed. After stirring for 1 $\mathrm{h}, \mathrm{H}_{2} \mathrm{O}$ (2 ml) was added slowly with caution. The ether layer was concentrated. The yellow oil residue was then flash chromatographed on silica gel [9], using 20% EtOAc in hexanes solution as an eluent. A yellow band was collected and concentrated to give a mixture of 6 and α-methylbenzyl alcohol. The α-methylbenzyl alcohol was then removed under vacuum at $60^{\circ} \mathrm{C}$. The residue was flash chromatographed again on silica gel and 15% EtOAc in hexanes as an eluent, providing $0.668 \mathrm{~g}(81 \%)$ of 6 as yellow liquid. TLC (silica gel): $R_{f}=0.13\left(15 \%\right.$ EtOAc in hexanes). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $1938 \mathrm{~s}, 1857 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta$ $7.42-7.26(5 \mathrm{H}, \mathrm{m}$, phenyl-H's), $6.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.6$, 5.2 Hz), 5.25 (s) and $5.22(\mathrm{~s})(5 \mathrm{H}, \mathrm{Cp}-\mathrm{H}$'s), $4.82(0.5 \mathrm{H}$, dd, $J=5.2,5.0 \mathrm{~Hz}$, benzylic-H, isomer a), $4.69(0.5 \mathrm{H}$, dd, $J=5.2,2.2 \mathrm{~Hz}$, benzylic-H, isomer b), 4.40-4.25 ($2 \mathrm{H}, \mathrm{m}$), $4.03-3.96(2 \mathrm{H}, \mathrm{m}), 2.77-2.70(1 \mathrm{H}, \mathrm{m}), 2.15$ $(0.5 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz},-\mathrm{OH}$, isomer a), $2.11(0.5 \mathrm{H}, \mathrm{d}$, $J=2.2 \mathrm{~Hz},-\mathrm{OH}$ isomer b). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50$ MHz): $\delta 240.0$ and 239.7 (CO), 235.3 and 235.1 (CO), 142.3 (C, phenyl), 134.2 and 133.6 (CH , olefin), 128.0 and $127.8(\mathrm{CH} \times 2$, phenyl), 127.1 and $127.0(\mathrm{CH}$, phenyl), 126.2 and $125.9(\mathrm{CH} \times 2$, phenyl), 116.2 and $113.8(\mathrm{CH}$, olefin), $91.7(\mathrm{CH} \times 5, \mathrm{Cp}-\mathrm{C}$'s), 77.6 and $77.3\left(\mathrm{CH}\right.$, hydroxyl-C), $58.5\left(\mathrm{CH}, \eta^{3}\right.$-allyl), $50.8(\mathrm{CH}$, η^{3}-allyl), 50.5 (CH, η^{3}-allyl), 45.5 and 45.4 (CH). Anal. Found: C, 59.76; H, 4.14. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{3}$ Mo calc.: C, 59.71; H, 4.51\%.
3.4. Preparation of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}-\right.$ $\left.\mathrm{OH}^{t} \mathrm{Bu}\right)(7 \mathrm{a})$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}\left(\mathrm{CO}_{2}\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CO}^{t} \mathrm{Bu}\right)\right.$ (8a)

To a stirred yellow solution of $1(3.27 \mathrm{~g}, 11 \mathrm{mmol})$ and pivaldehyde ($6 \mathrm{ml}, 55 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(110 \mathrm{ml})$ at room temperature was added a hexane solution of $\mathrm{Me}_{3} \mathrm{Al}(17 \mathrm{ml} \times 2 \mathrm{M})$ slowly over 30 min . A cloudiness was observed which disappeared immediately. The resulting orange solution was stirred for 20 h . Water (10 $\mathrm{ml})$ was added slowly with caution. The orange ethereal layer was concentrated and then flash chromatographed on silica gel, using 5% EtOAc followed by 15% EtOAc in hexanes as eluents. Two fractions were obtained:
1). First fraction providing $2.30 \mathrm{~g}(55 \%)$ of 8 a as an orange solid. TLC (silica gel): $R_{f}=0.60$ (25% EtOAc in hexanes). An analytically pure sample was obtained by recrystallization from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes ($1 / 5$), solution at $-20^{\circ} \mathrm{C}$. m.p. $130-131^{\circ} \mathrm{C}$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 1937 s , $1858 \mathrm{~s}, 1691 \mathrm{~m} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ 6.24-6.20 ($1 \mathrm{H}, \mathrm{m}$), $5.27(5 \mathrm{H}, \mathrm{s}), 4.40-4.38(2 \mathrm{H}, \mathrm{m})$, 4.03-4.00 ($1 \mathrm{H}, \mathrm{m}$), 3.85-3.83 ($1 \mathrm{H}, \mathrm{m}$), 3.81-3.79 (1 H , $\mathrm{m}), 1.21(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 239.0$ (CO), $235.4(\mathrm{CO}), 214.8(\mathrm{C}=\mathrm{O}), 133.4(\mathrm{CH}), 113.0(\mathrm{CH})$, $91.9(5 \times \mathrm{CH}, \mathrm{Cp}), 58.8(\mathrm{CH}), 52.1(\mathrm{CH}), 50.0(\mathrm{CH})$,
$45.4(\mathrm{CH}), 45.0(\mathrm{C}), 25.9\left(\mathrm{CH}_{3}\right)$. Mass spec (EI, 20 eV , Mo - 190): 354 (100, M ${ }^{+}$- CO), 269 ($43, \mathrm{M}^{+}-\mathrm{CO}-$ $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}$), $241\left(82, \mathrm{M}^{+}-2 \mathrm{CO}-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}\right)$. Anal. Found: $\mathrm{C}, 56.79 ; \mathrm{H}, 5.29 . \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}$ Mo calc.: C, $56.85 ; \mathrm{H}$, 5.30\%.
2). Second fraction providing $0.320 \mathrm{~g}(7.6 \%)$ of a $3: 1$ mixture of 7a as orange liquid. TLC (silica gel): $R_{f}=$ 0.39 (25% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200$ $\mathrm{MHz}): \delta 6.36-6.28(0.75 \mathrm{H}, \mathrm{m}), 6.23-6.15(0.25 \mathrm{H}, \mathrm{m})$, 5.27 ($5 \mathrm{H}, \mathrm{s}, \mathrm{Cp}-\mathrm{H}$'s), $4.53-4.17$ ($2 \mathrm{H}, \mathrm{m}$), 4.02-3.88 (2 H , $\mathrm{m}), 3.37(0.75 \mathrm{H}, \mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}), 3.30-3.28(0.25 \mathrm{H}$, m), 2.76-2.72 ($0.75 \mathrm{H}, \mathrm{m}$), 2.70-2.64 ($0.25 \mathrm{H}, \mathrm{m}$), 1.75 $(0.25 \mathrm{H}, \mathrm{d}, J=3.8 \mathrm{~Hz},-\mathrm{OH}), 1.70(0.75 \mathrm{H}, \mathrm{d}, J=8.0$ $\mathrm{Hz},-\mathrm{OH}), 1.07(0.25 \times 9 \mathrm{H}, \mathrm{t}-\mathrm{Bu}), 0.95(0.75 \times 9 \mathrm{H}, \mathrm{s}$, $\mathrm{t}-\mathrm{Bu}$).

3.5. Preparation of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CO}\right.$ $\mathrm{C}_{3} \mathrm{H}_{5}$) (8b)

To a stirred yellow solution of $1(3.950 \mathrm{~g}, 13.34$ mmol) and crotonaldehyde ($5.5 \mathrm{ml}, 66 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ (130 ml) cooled in iced water was added a hexane solution of $\mathrm{Me}_{3} \mathrm{Al}(20 \mathrm{ml} \times 2 \mathrm{M})$ slowly over 30 min . The ice-water bath was removed and allowed to stir at room temperature for 20 h . Gas evolution was observed during the warm-up period. Water (10 ml) was added to the resulting orange solution with caution. The orange ethereal layer was concentrated. The orange liquid residues were flash chromatographed on silica gel, using 10% EtOAc followed by 20% EtOAc in hexanes as eluents. An orange band at $R_{f}=0.14$ (10% EtOAc in hexanes) was collected and concentrated to give $1.85 \mathrm{~g}(38 \%)$ of complex $\mathbf{8 b}$ as orange solids. An analytically pure sample was obtained by recrystallization from a $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes $(1 / 10)$ solution at $-20^{\circ} \mathrm{C}$. $\mathrm{Mp} .132-133.5^{\circ} \mathrm{C}$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1941 \mathrm{~s}, 1862 \mathrm{~s}, 1679 \mathrm{~m}$, $1664 \mathrm{~m}, 1625 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta$ $6.98\left(1 \mathrm{H}, \mathrm{dq}, J=15.4,6.9 \mathrm{~Hz}, \mathrm{H}_{9}\right), 6.38(1 \mathrm{H}, \mathrm{dq}$, $\left.J=15.4,1.7 \mathrm{~Hz}, \mathrm{H}_{8}\right), 6.30-6.21\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right), 5.28(5 \mathrm{H}$, $\mathrm{s}, \mathrm{Cp}-\mathrm{H}$'s $), 4.61-4.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}\right), 4.37(1 \mathrm{H}, \mathrm{t}, J=6.6$ $\left.\mathrm{Hz}, \mathrm{H}_{2}\right), 4.09-3.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1}\right.$ and $\left.\mathrm{H}_{3}\right), 3.39-3.36(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}_{6}\right), 1.92\left(3 \mathrm{H}, \mathrm{dd}, J=6.9,1.7 \mathrm{~Hz}, \mathrm{H}_{10}^{\prime} \mathrm{s}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 239.3(\mathrm{CO}), 234.6$ (CO), 198.8 $(\mathrm{CO}), 143.4\left(\mathrm{C}_{9}\right), 134.1\left(\mathrm{C}_{4}\right), 128.7\left(\mathrm{C}_{8}\right), 112.7\left(\mathrm{C}_{5}\right)$, $92.0\left(\mathrm{Cp}-\mathrm{C}^{\prime} \mathrm{s}\right), 58.6,51.0,50.7,50.3,18.3\left(\mathrm{C}_{10}\right)$. Anal. Found: C, 55.85; H, 4.35, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$ Mo calc.: C, 56.06; H, 4.43\%.

3.6. Preparation of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}\left(\mathrm{CO}_{2}\right)^{2} \eta^{3}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}$ $\left(\mathrm{COCH}_{2}\right)_{2} \mathrm{~J}$ (9)

To a stirred yellow solution of $1(2.96 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 ml), kept cool in a dry ice-acetone bath, was added powdered N -bromosuccinimide ($1.97 \mathrm{~g}, 11$ mmol) in portions over 10 min . After stirring for an additional 10 min , the dry ice-acetone bath was re-

Table 3
Crystal data and details of the structure determination of complex 8 b and 9

formula	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Mo}$	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{Mo}$
mol wt	368.28	393.25
cryst syst	triclinic	monoclinic
space group	$P-1$	$P 2_{1} / \boldsymbol{c}$
$a(\AA)$	8.1040 (18)	6.4414(8)
b (\AA)	9.2405(12)	22.525(3)
$c(\AA)$	11.2224(7)	10.5893(12)
α (deg)	104.723(8)	90
β (deg)	95.080(11)	94.962(16)
γ (deg)	105.316(14)	90
cell vol (\AA^{3})	773 (1)	1530.7(3)
$Z ; D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	2; 1.582	4;1.706
$F(000)$	376	792
cryst size (mm)	$0.13 \times 0.13 \times 0.44$	$0.28 \times 0.41 \times 0.41$
scan range (deg)	$0.70+0.35 \tan (\theta)$	$0.60+0.35 \tan (\theta)$
2θ range (deg)	4-45	4-45
h, k, l range	$(-8 ; 8),(0 ; 9),(-12 ; 11)$	$(-6 ; 6),(0 ; 24),(0 ; 11)$
$\mu\left(\mathrm{cm}^{-1}\right)$	8.34	8.542
no. of colled reflns	2189	2197
no. of unique reflns	2015	1993
no. of reflns with $I>2 \sigma$ (I)	1520	1752
no. of refined params	190	268
weighting scheme	$1 / \sigma^{2}(F)$	$1 / \sigma^{2}(F)$
final R, R_{w}	$0.040,0.047$	0.022, 0.028
GOF	1.58	1.77
maximum shift/ σ ratio	0.004	0.034
min, max diff map (e \AA^{-3})	-0.410, 0.430	-0.340, 0.280

placed with an ice-water bath. Stirring was continued for $30 \mathrm{~min} . \mathrm{Et}_{3} \mathrm{~N}(5 \mathrm{ml})$ was then added to the resulting dark orange solution and stirred for 10 min . Solvents were evaporated. The resulting brown solids were

Table 4
Atomic coordinates and $B_{\text {iso }}$ of $\mathbf{8 b}$

Atom	x	y	z	$B_{\text {iso }}$
Mo	0.29289(9)	$0.29790(8)$	0.19750(6)	3.84(3)
O(1)	0.2887(10)	$0.3330(10)$	-0.0696(6)	9.2(6)
O(2)	-0.1005(8)	0.1728(8)	0.0964(7)	8.5(4)
O(3)	-0.1528(7)	0.6324(7)	0.3968(5)	5.7(3)
C(1)	$0.2933(11)$	0.3238(11)	0.0321(9)	6.1(5)
C(2)	0.0471(11)	0.2207(9)	0.1358(8)	5.2(4)
C(3)	0.5356(12)	$0.2711(10)$	$0.3140(8)$	5.9 (5)
C(4)	0.5269(12)	0.1961(13)	0.1863(9)	6.8(6)
C(5)	0.3708(14)	0.0706(11)	0.1494(9)	$6.9(6)$
C(6)	0.2875(13)	0.0681(10)	0.2517(10)	6.7(6)
C(7)	$0.3866(13)$	$0.1917(11)$	0.3529(8)	6.0.5)
C(8)	0.1630 (10)	0.4661(8)	0.3263(6)	4.0(4)
C(9)	0.3408(11)	$0.5285(9)$	$0.3320(7)$	4.6(4)
C(10)	0.3946(11)	$0.5698(10)$	0.2292(9)	5.9(5)
C(11)	0.2806(17)	0.6265(10)	0.1588(9)	7.0(6)
C(12)	0.1168(14)	0.6162(10)	0.1772(8)	6.0(5)
C(13)	0.0398(10)	0.5368(8)	0.2703(7)	4.6(4)
C(14)	$-0.0060(11)$	0.6534(9)	0.3763(7)	4.4(4)
C(15)	0.1374(10)	0.7892(9)	$0.4520(7)$	4.6(4)
C(16)	0.1220(12)	0.8878(9)	0.5581(8)	5.4(5)
C(17)	0.2612(13)	1.0254(10)	$0.6397(8)$	$6.7(5)$

flash chromatographed on silica gel, using 40% EtOAc followed by 80% EtOAc in hexanes as eluents. A yellow band at $R_{f}=0.77(100 \% \mathrm{EtOAc})$ was collected

Table 5
Atomic coordinates and $B_{\text {iso }}$ of 9

Atom	\boldsymbol{x}	y	z	$\boldsymbol{B}_{\text {iso }}$
Mo	$0.27152(4)$	$0.0708(1)$	$0.22585(2)$	$2.54(1)$
N	$0.1140(4)$	$0.1625(1)$	$-0.1737(2)$	$3.02(12)$
$\mathrm{O}(1)$	$0.6183(4)$	$0.0600(1)$	$0.0456(2)$	$4.34(13)$
$\mathrm{O}(2)$	$0.6178(5)$	$0.1535(1)$	$0.3704(3)$	$6.93(17)$
$\mathrm{O}(3)$	$0.3151(4)$	$0.1131(1)$	$-0.3082(2)$	$4.47(12)$
$\mathrm{O}(4)$	$-0.1416(4)$	$0.2168(1)$	$-0.0892(3)$	$5.06(13)$
$\mathrm{C}(1)$	$0.4877(6)$	$0.0677(1)$	$0.1122(3)$	$3.13(15)$
$\mathrm{C}(2)$	$0.4872(6)$	$0.1265(2)$	$0.3168(4)$	$4.26(17)$
$\mathrm{C}(3)$	$0.2160(6)$	$-0.0241(2)$	$0.2401(3)$	$3.56(17)$
$\mathrm{C}(4)$	$0.3261(7)$	$-0.0046(2)$	$0.3516(3)$	$3.88(17)$
$\mathrm{C}(5)$	$0.1959(6)$	$0.0334(2)$	$0.4151(3)$	$4.03(18)$
$\mathrm{C}(6)$	$0.0064(6)$	$0.0368(2)$	$0.3416(4)$	$3.90(18)$
$\mathrm{C}(7)$	$0.0190(6)$	$0.0019(2)$	$0.2337(4)$	$3.64(17)$
$\mathrm{C}(8)$	$0.1168(5)$	$0.1127(1)$	$0.0312(3)$	$2.70(14)$
$\mathrm{C}(9)$	$0.0403(5)$	$0.1410(1)$	$0.1364(3)$	$2.90(14)$
$\mathrm{C}(10)$	$0.1782(6)$	$0.1807(2)$	$0.2015(3)$	$3.45(16)$
$\mathrm{C}(11)$	$0.3211(6)$	$0.2135(2)$	$0.1277(4)$	$3.85(17)$
$\mathrm{C}(12)$	$0.3454(6)$	$0.2013(2)$	$0.0091(4)$	$3.78(17)$
$\mathrm{C}(13)$	$0.2455(5)$	$0.1479(2)$	$-0.0550(3)$	$3.04(15)$
$\mathrm{C}(14)$	$0.1611(6)$	$0.1409(1)$	$-0.2912(3)$	$3.24(15)$
$\mathrm{C}(15)$	$-0.0141(7)$	$0.1582(2)$	$-0.3868(4)$	$4.33(20)$
$\mathrm{C}(16)$	$-0.1687(6)$	$0.1912(2)$	$-0.3143(4)$	$4.12(18)$
$\mathrm{C}(17)$	$-0.0746(6)$	$0.1933(2)$	$-0.1787(3)$	$3.58(17)$

to give $1.32 \mathrm{~g}(36 \%)$ of complex 9 as a yellow foam after removal of solvents. An analytically pure orange crystal was obtained by slow diffusion of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution into hexane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane $\left.=1 / 10\right)$ at $25^{\circ} \mathrm{C}$. $\mathrm{Mp} .110^{\circ} \mathrm{C}$ (dec.). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1948 \mathrm{~s}, 1866 \mathrm{~s}, 1701 \mathrm{~s}$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 6.40-6.32(1 \mathrm{H}$, m), 5.25 ($5 \mathrm{H}, \mathrm{s}, \mathrm{Cp}-\mathrm{H}$'s), $4.72-4.60(2 \mathrm{H}, \mathrm{m}), 4.41-4.33$ $(1 \mathrm{H}, \mathrm{m}), 4.20-4.14(1 \mathrm{H}, \mathrm{m}), 3.68-3.61(1 \mathrm{H}, \mathrm{m}), 2.66$ ($4 \mathrm{H}, \mathrm{s}$). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$): $\delta 239.8$ (CO), $234.5(\mathrm{CO}), 176.6(\mathrm{CO} \times 2), 135.6(\mathrm{CH}), 111.5(\mathrm{CH})$, $92.1(\mathrm{CH} \times 5)$, $61.2(\mathrm{CH}), 51.0(\mathrm{CH} \times 2)$, $47.8(\mathrm{CH})$, $28.1\left(\mathrm{CH}_{2} \times 2\right)$. Anal. Found: C, $51.52 ; \mathrm{H}, 3.54 ; \mathrm{N}$, 3.55. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{4}$ Mo calc.: $\mathrm{C}, 51.92 ; \mathrm{H}, 3.84 ; \mathrm{N}, 3.56 \%$.
3.7. Crystal structure of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{C}_{6} \mathrm{H}_{6}\right.$ $\mathrm{COC}_{3} \mathrm{H}_{5}$) (8b) and ($\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$) $\mathrm{Mo}(\mathrm{CO})_{2} 2^{3} \eta^{3}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}$ $\left(\mathrm{COCH}_{2}\right)_{2}$] (9)

A single crystal of $\mathbf{8 b}$ was grown in a $1: 10$ solution of dichloromethane and n-hexane at $-20^{\circ} \mathrm{C}$. The single crystal of 9 was grown by slow diffusion of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 9 into hexane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $=$ $1 / 10$) at $25^{\circ} \mathrm{C}$. Diffraction measurements of both compounds were made on an Enraf-Nonius CAD-4 diffractometer by use of graphite-monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.7093 \AA$) in the $\theta-2 \theta$ scan mode. Unit cell dimensions were obtained by least-squares refinement with use of 22 centred reflections for which $15.63^{\circ}<2 \theta<31.99^{\circ}$ for 8 b and $16.43^{\circ}<2 \theta<36.49^{\circ}$ for 9. Other crystal data and refinement details are listed in Table 3. Atomic coordinates and $B_{\text {iso }}$ of $\mathbf{8 b}$ and 9 are listed in Tables 4 and 5 respectively.

4. Supplementary material available

Lists of crystal data and refinement details, atomic coordinates and $B_{\text {iso }}$ bond lengths and angles and torsion angles of $\mathbf{8 b}$ and $\mathbf{9}$ are available from T.-F.W.

Acknowledgement

We are grateful to the National Science Council of Taiwan, ROC for financial support.

References

[1] A.J. Pearson and R. Mortezaei, Tetrahedron Lett., 30 (1989) 5049; A.J. Pearson, V.D. Khetani and B.A. Roden, J. Org. Chem., 54 (1989) 5141; S. Hansson, J.F. Miller and L.S. Liebeskind, J. Am. Chem. Soc., 112 (1990) 9660; W.J. Vong, S.M. Peng, S.H. Lin, W.J. Lin and R.S. Liu, J. Am. Chem. Soc., 113 (1991) 573.
[2] M. Green, S. Greenfield and M. Kersting, J. Chem. Soc., Chem. Commun. (1985) 18; J. Feldman and J.C. Calabrese, J. Chem. Soc., Chem. Commun. (1991) 134; T.F. Wang and Y.S. Wen, J. Organomet. Chem., 439 (1992) 155.
[3] A.J. Pearson and M.W.D. Perry, J. Chem. Soc., Chem. Commun., (1989) 389.
[4] J.W. Faller, H.H. Murray, D.L. White and K.H. Chao, Organometallics, 2 (1983) 400.
[5] J.W. Faller, J.A. John and M.R. Mazzieri, Tetrahedron Lett., 30 (1989) 1769.
[6] B.B. Snider, D.J. Rodini, M. Karras, T.C. Kirk, E.A. Deutsch, R. Cordova and R.T. Price, Tetrahedron, 37 (1981) 3927.
[7] C. Djerassi in Organic Reactions, 6 (1951) 207.
[8] J.W. Faller, D.F. Chodosh and D. Katahira, J. Organomet. Chem., 187 (1980) 227.
[9] W.C. Still, M. Kahn and A. Mitra, J. Org. Chem., 43 (1978) 2923.

[^0]: * Corresponding author.

